

平 久美子¹,長谷川 浩², Collins Nimako³,
 池中 良徳³,中山 翔太³,一瀬 貴大³,
 石塚 真由美³
 1)東京女子医科大党附属民立医療センター

1) 東京女子医科大学附属足立医療センター,

2) 福島県有機農業ネットワーク

3) 北海道大学大学院獣医学研究院

利益相反はありません。 本研究はアクトビヨンドトラストの助成を受けて実施され、 概要は、2022年3月に、Environmental International <u>https://doi.org/10.1016/j.envint.2022.107169</u>に掲載されました。

背景

- ネオニコチノイドは1990年代に使用が始まった殺虫剤
 で、日本では年間約400トン使用されている。
- •多種類の食品に高頻度で相当濃度の残留がみられる。
- •昆虫だけでなくヒトのニコチン受容体にも作用する。
 - ヒトの臨床研究
 - 神経毒性(Taira 2011, 2012, 2016)
 - 心毒性 (Taira 2006)
 - 腎毒性 (Taira 2021)
 - 肝毒性 (Zhang 2022)
 - 生殖毒性 (Wang 2022)
 - ヒトの細胞実験
 - 発達神経毒性 (Loser 2021)
 - 免疫毒性 (Prisco 2013)

有機農業の推進が世界的課題となっている。

日本で使用されているネオニコチノイドと類似物質

物質名	代表的な製剤名	分類名	農薬 登録年	開発者
イミダクロプリド	アドマイヤー	ネオニコチノイド	1992	バイエル
アセタミプリド	モスピラン	ネオニコチノイド	1995	日本曹達
ニテンピラム	ベストガード	ネオニコチノイド	1995	住友化学
チアメトキサム	アクタラ	ネオニコチノイド	2000	シンジェンタ
チアクロプリド	バリアード	ネオニコチノイド	2001	バイエル
クロチアニジン	ダントツ、ベニカ	ネオニコチノイド	2002	住友化学
ジノテフラン	スタークル, アルバリン	ネオニコチノイド	2002	三井化学
フルピラジフロン	シバント	ブテノリド	2015	バイエル
スルホキサフロル	エクシード、 トランスフフォーム	スルホキシイミン	2017	ダウ
トリフルメゾピリム	ゼクサロン、ピラキサルト	メソイオン	2018	デュポン
フルピリミン	リディア、エミリア	ピリジリデン	2019	MeijiSeika

ネオニコチノイドの体内濃度は 低濃度でも持続的に摂取することで徐々に上昇する。 (イミダクロプリドのシミュレーション、Loser 2021)

ヒトに吸収されたネオニコチノイドのゆくえ

ネオニコチノイドの尿中検出 =脳および全身の臓器がネオニコチノイドに暴露されている

対象と方法

- ・北海道大学倫理委員会の承認(No. Juui-30-1)を得て、
- ・福島県の住民に、福島県有機農業ネットワークの提供す る有機農産物のコメ、野菜、ジャガイモ、豚肉の味噌漬 けを提供し食べてもらい、尿を1日3回採取した。
 - A群: 摂取しなかった28人
 - B群:5日間摂取した36人
 - C群:30日間摂取した4人
- 分析までポリプロピレンチューブに入れ-20℃で冷凍保存した。
- ・ネオニコチノイド7種とアセタミプリドの代謝物デスメ
 チルアセタミプリドの尿中濃度分析を、LC-ESI/MS/MS
 (Agilent6495B, USA)を用い行なった。

アセタミプリドの6割は、デスメチルアセタミプリドとして尿中に排泄される(Harada 2016)。

	尿中 排泄割合	尿中 排泄半減期
デスメチルアセタミプリド	59%	40時間
イミダクロプリド	13%	35時間
クロチアニジン	60%	14時間
ジノテフラン	90%	4時間

対象者の背景と採取検体数

	A群	B群	C群
n	28	36	4
検体採取日	7/17-9/11	6/24-9/12	7/21-9/14
有機農家/減農薬農家/非農家	13/0/15	0/4/32	0/0/4
性別(M/F)	16/12	14/22	2/2
年齢(mean±SD)	28.8±17.9	23.3±16.8	16.8±17.7
(min-med-max)	2-36-57	1-28-49	0-18-32
7歳未満	25%	25%	50%
サンプル数			
開始前3日間分	240	313	34
3-5日目	0	310	32
19 日目以降	0	0	48

男女で比較すると

	男性	女性	р
n (検体数)	32 (269)	36 (315)	
年齢	21.6 ± 18.7	28.3 ± 15.6	0.11
有機農家	8	5	0.24

DMAP、ジノテフランの濃度に有意差はなかった。 (Mann-Whitney U検定)

年齢で比較すると

	7歳未満	7 歳以上	р
n (検体数)	17 (139)	51 (445)	
性別 (M/F)	11/6	21/30	0.09
有機農家	2	11	0.37
DMAP (median)	0.40	0.30	0.008

7歳未満では、デスメチルアセタミプリドの濃度が高く (Mann-Whitney U検定)、ジノテフランの検出率が低い。

有機農家/非農家で比較すると

有機農家(n=13,117検体)は非農家(n=51,432検体)と比べ デスメチルアセタミプリドの濃度が低かった。 (Mann-Whiteney U検定、中央値 0.10 vs 0.50, p<0.0001)

<u>福島県有機農業ネットワークの提供する有機農産物</u> コメ、野菜、ジャガイモ、豚肉の味噌漬け

7歳以上で尿中ネオニコチノイド検出率は低下した。 7歳未満の小児では、低下は一様でなかった。

■開始前 図3日目 □4日目 図5日目

開始前3日間と3、4、5日目の平均値の比較(7歳以上、29例)

72%

83%

83%

57%

尿中濃度が低下した。

開始前3日間と3-5日目の平均値の比較(7歳未満、11例)

84%

尿中濃度が低下した。

男女による尿中排泄率低下に差は見られなかった。

男性(N=15)

女性 (N=22)

排泄半減期が1.5日のデスメチルアセタミプリド、イミダクロプリドは、排泄が 持続した。

排泄半減期が数時間のクロチアニジン、ジノテフランは速やかに消失した。

クロチアニジン

ジノテフラン

30

35

40

結論

- 有機農産物摂取は、ネオニコチノイド摂取を減らす
 ことについて、一定の効果がある。
- しかし、多種類の食品に残留していること、水、大気など環境中からの暴露もあることから、ヒトが摂取するネオニコチノイドをゼロにすることは、現時点で難しい状況にある。
- 農業におけるネオニコチノイド使用を減らし、有機
 農産物の生産を増やすことは、生態系と農家の暴露
 を減らし、国民の暴露と体内残留を減らすのに有効かもしれない。

有機農産物の生産を増やすことは、国土と国民、 ひいては、地球と人類を守ることにつながる。

